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ABSTRACT 

It  is proved that  from each interior point  of  a planar convex body emanate 
three distinct vectors terminating on the boundary, the sum of any two of 
which also terminates in the boundary. Some other related results are obtained. 

In this article we prove that from each interior point of a planar convex body 
emanate three distinct vectors terminating on the boundary, the sum of any two 
of  which also terminates o n  the boundary. (See Figure 1). We also show the 
related result that through each interior point of a planar convex body pass the 
boundaries of three distinct translates which cover the body in the sense of pro- 
perty fl below. (See Figure 2). In addition, we investigate the nature of the set of 
points on the boundary which can be end points of such triples of  vectors and 
their pair sums. Finally, we pose some related unsolved problems. 

We begin by saying that a planar body C has:* 
property ct at p ~ C ° i f  there exist 

(x - p) + (y - p), ( x -  p) + (z - p) and 
(See Figure 1). 

distinct points x,y, z eBdC such that 
( z - p )  + ( y - p )  also belong to BdC. 

Figure 1 

property fl at p ~ C ° if  there exist distinct translates, C1, C2, and C3, such tha 
n~=iBdCi={p} and the set B d C n B d C ~ n B d C j  for each i:/:j consists of  
exactly one point. (See Figure 2). 

There exists a natural relationship between the three points of property ~t and 
the three translates of property fl as given by the following lemma: 

LEMMA 1. (1) I f  property ~ is satisfied at p e C ° with x, y, and z, then 
property fl is satisfied with the translates C + ( p -  x), C + ( p - y )  and C + ( p - z ) .  
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* The symbols C ° and BdC denote the interior and boundary of C respectively. 
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(2) I f  C is rotund (ie, there are no line segments in BdC) and property fl is 
satisfied with the translates C + ai(i = 1,2,3), then property ct is satisfied with 
the points p -  a~ (i = 1, 2, 3). 

Figure 2 

Proof. The proof  of  (1) is obvious. For  the proof  of  (2), let us assume that 
p = 0 and that C + a 1, C + a 2 and C + a 3 are in consecutive counterclockwise 
order around BdC. Define xl by {xi} = BdC n Bd(C + ai) n B d ( C  + a~+l). 
Then to obtain property c~ it clearly suffices to show that x~ = - a i +  2 (rood. 3). 
Without loss of generality we can assume that we have x2 < - a l  < xl < - a 3  
or - a l  < x2 < - a a  _~ xl ,  where the order is taken to be counterclockwise 
around BdC. Consider the first case (the second case will be similar) and the 
resulting two pairs of two parallel and equal (in length) line segments ['0, - a3"] 
and [x2 ,x2 -a3] ;  [ 0 , - a l l  and [ x l , x l - a l ] .  From the convexity of  C and the 
absence of  line segments in BdC it follows that these four segments must form a 
parallelogram, in which case x I = - a  3 and x2 = - a ~ .  This in turn forces 
x3 = - a2, proving the Lemma. 

It is easily seen that the relationship of  part  (2) in the Lemma need not hold 
for non-rotund bodies (e.g., a parallelogram). Now we prove our main result: 

TrmogE~ 1. Properties ~ and fl are satisfied at each interior point of a planar 
convex body. 

Pr~mf. By Lemma 1 it suffices to show only property ~ at each interior point. 
We will first prove this for a rotund body and then pass to the limit for the general 
case. 

Suppose C is rotund and that p = 0 E C °. Let  x~ be an arbitrary point in BdC. 
Then there will be exactly two chords of  C equal and parallel to the segment 
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[0 ,x t ] .  Taking the chord on the counterclockwise side of  xi  we will obtain a 
Yl ~BdC such that  x~ + yx ~BdC. Repeating this process (counterclockwise 

around BdC) we also obtain a z I ~ BdC such that  Yl + zl e BdC, and a x2 ~ BdC 
such that  zl + XzZ BdC. I f  x~ = x2, then we have our desired triple of  points. Other-  

X oo Z oo wise we continue this process to obtain sequences { .}.=1,{Y.}.~=1 and{  .}.=1 
such that  for each n, x. + y.,  y.  + z. and z. + x.  ÷ ~ belong to BdC. 

Now, since x: # x2 and C is not  a parallelogram, we obtain two cases: either 

xl < x2 < zl or Yl < x2 < xl.  
Case I. In case xl < x2 < zl ,  let us prove by induction that  for each k 

x 1 < x~ < < z t ~_ _~ X k +  l 

Yl < Yk ~- Yk+l < xt 
and z l < z k <  < y ~  . ~  Z k +  1 

For  k = 1 we have x~ < x2 < Zl by assumption and the inequalities y~ < Y2 < Xl 
and z~ < z2 < y t  follow f rom this. Now assume that  the above proposit ion holds 

for all i < k. Then f rom the fact that  zt < zk+: < yt  it clearly follows that  
x~ <xk+~ <xk+2  < z l .  F rom this in turn follow the other two inequalities 

Y ~ < Y t + x < Y ~ + 2 < x l a n d z ~  < =  = = zk+~ =< zk+2 < Y l ,  which proves the proposit ion 

for /c  + 1. Hence, each of  the three sequences {x.}.~= 1, {Yn}~= 1 and {z.}.~ 1 is a 

monotonic  sequence contained in a closed proper  subarc of  BdC. Therefore,  the 

sequences will converge to distinct points x, y and z respectively. Taking limits we 

also obtain x + y, x + z and y + z ~ BdC. Thus, proper ty  • is satisfied in Case I 

Case II.  In case y:  < x 2 < xt we first need to prove the following lemma:  

LEM~A 2. I f  there are three consecutive translates of the rotund body C 
passing through p eC  ° (i.e., there exist translates C 1, C2 and C3 such that 
n~=l BdC ~ = {p} and BdC~n BdCi+ I n BdC =/= A for i = 1,2) which fai l  to cover 
BdC (i.e., B d C -  u~= tCt ~ 0), then property fl is satisfied at p. 

Proof. Suppose p = 0 and Ct is the first translate in the counterclockwise 

direction f rom the arc BdC - U~ 31 C~. For  x ~ BdC let C(x) be the first translate 

of  C in the counterclockwise direction f rom x which has [0, x] as a chord. Clearly 

each translate can be so expressed. Also let x'  denote the other point of  inter- 

section of  BdC with BdC(x). Let a l  be such that  C 1 = C(al). Put bl = a~ and 

cl = bl.  Then C: C(bl) and Ca C(ci). Then put  a 2 = cl,  b 2 = a 2 and c2 = b2. 
a ® Continuing in this way we obtain sequences { .}~_-~, {b.}.~ ~ and {c~}.~ 1 such 

that  a~ + 1 = c ' ,  b. + 1 = a" + 1 and c. + ~ = b'. + x. The assumption that  Cx, C2 and Ca 

fail to cover BdC means that  a~ < a2 < c~. Now (using the fact that each two 

distinct translates of  C whose boundaries contain 0 intersect in two distinct 
arcs in BdC, no one of  which is contained in the other) employing the same 

argument  as we did in Case I we see that  the sequences {a.}.= t, {b.}.= ~ and 
{c.}.~= t converge to distinct a, b, c respectively. Consequently, the three sequences 

of  translates {C(a.)}~= 1, {C(b.)}.~=~ and {C(c.)}.~=~ converge to the translates 
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C(a), C(b) and C(c) respectively which obviously satisfy property fl, finishing the 
proof  of  Lemma 2. 

Now consider the three translates C - x  2, C - y x ,  and C - z  1. Then 
{Zl} =Bd(C-x2)('l Bd(C-yl) and the two points of  B d C n  Bd(C-Zl)  lie 
outside the arc BdC n ( (C-x2)  U ( C - y l ) ) .  Then clearly C - x2, C - Yl and 
C(xl) will constitute three consecutive translates passing through 0 which fail 
to cover BdC. Hence, by Lemma 2, property fl, and therefore property ~ by 
Lemma 1, is satisfied at 0. Thus, property ~ holds in Case II. 

Now we consider a general convex body C and let p = 0 e C °. Then we can 

C easily find a sequence of  rotund bodies { n}n = 1 such that 0 e C O ~ C for each n 

and C is the limit of  {Cn}~= 1 in the Hausdorff  metric. For  each n there exist 
xn, yn and z~ in BdC for which property ~ holds with respect to Cn. Since C is 
sequentially compact,  we can then find a subsequence k such that 

{Xkn}n °°= 1, {Yk,}n°~= 1 and {Zkn}nc°= 1 conve rge  to points x, y, z respectively in ndC. 
Moreover,  x, y and z are all distinct. For  suppose x = y, then since 0 e 
arc (xkn, Yk) c_ BdCk, we have, by taking limits, 0e BdC, a contradiction. Also by 
taking limits we have x + y, y + z and x + z in BdC. Therefore, property ~ is 
satisfied with x, y and z, which finishes the proof  of  the Theorem. 

If  property ~ is satisfied at 0 by a triple x, y and z, then x, x + y, y, y + z, z 

and x + z  determine an inscribed centrally symmetric hexagon. (See Figure 1)*. 
Let us denote by V the set of  all points on BdC which are vertices of some such 
inscribed centrally symmetric hexagon. The set V may not  be all of  BdC; for 
example, the vertices of  a triangle are not in 11. In the case C is rotund and 
differentiable, it seems reasonable to conjecture that V =  BdC. However, the best 
we have done in trying to settle this is the following theorem: 

THEOREM 2. Suppose C is rotund and differentiable. Then ( 1 ) B d C - V  
consists of isolated points (and hence is countable) and 

(2) i f  x e B d C - V ,  then x' ~ 17, where x' is the unique point z so that [x,z] 
is a diameter of C. 

Proaf. Let x be any paint  in BdC amnd let Ux be an open arc of  BdC which 
contains x, but small enough so that  no diameter of C intersects it twice. Let y 
be to the clockwise side of  x in Ux. Denote by [a,b] the other chord o f  C equal 
and parallel to [x,y]. Then we have nine possible cases: 

1. a < y '  < b < x '  
2. y' < a < x '  <b  
3. a < y '  < x '  <b  
4. y ' < a < b < x '  

5. y' < a < b = x '  
6. a < y ' < b = x '  
7. y ' = a < b = x '  
8. y ' = a < b < x '  
9. y ' = a < x '  <b. 

* It is well known that in each convex body one can inscribe an affme-regular (hence, 
centrally symmetric) hexagon. For references to this and other results on such inscribed hexagons 
s ~  Grtinbaum [1; p. 242]. 
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Correspondingly, we get nine cases if  y is to the counterclockwise side of  x in U=. 
Now we need three lemmas: 

LEMMA 3. Suppose one of the first four  cases prevails. Then x •  V ° and 
y • V  °. 

Proof. Suppose Case I holds and that y is to the clockwise side of  x in Ux. 
The other cases will be similar. Consider the two arcs arc (x ,y)  and arc (b ,a ) in  

BdC. Next "ref lec t"  one upon the other so that a coincides with y. Considering 
the direction of  the support lines at x, y, x ' ,  y ' ,  a and b, we see that arc (x ,y)  
must intersect the reflection of  arc (b, a) in a point  other than x and y. Then we 
obtain in the obvious way an inscribed hexagon with opposite sides equal and 
parallel. By the rotundity of C, its vertices, including x and y, must belong to V. 
Now if we consider x fixed, there will obviously be a neighborhood W of  y such 
that the Case I configuration holds relative to x and any point in  W. Hence, y • V °. 
Now fixing the y, we can find a neighborhood W of  x such that the Case I 
configuration holds with respect to any point in W and y. Hence, x • V °, which 
finishes the proof  of  the Lemma. 

LEMMA- 4. Suppose there are three distinct y in Ux for  which either one of 
cases, 5, 6 or 7 prevails (i.e., b = x'). Then x • V. 

Proof. We can assume without loss of  generality that two of  these points, 
say Yl and Y2, are to the clockwise side of x. Then it is easily seen that  x , y l , y  2 
and x '  comprise four vertices of  an inscribed centrally symmetric hexagon. 

LEMMA 5. Suppose there exists an open arc N containing x such that for  any 
y • N - { x } ,  cases 8 or 9 prevail. Then there exists an open arc M containing 

x such that M -  {x} _~ V. 

Proof. Let A = {y • N -  {x} : y '  < b < x'} and B = {y • N -  {x}: y '  < x '  < b}. 
Let  y~ A. Then reflecting arc (y, x ' )  upon the appropriate opposite arc we get y •V. 
Moreover,  the configuration of  case 8 will prevail in a small neighborhood of  y. 

Hence, A is open and contained in V °. Now if  y • B, the configuration of  case 9 
prevails in a small neighborhood of  y, so that B is open, too. Therefore, if arc (x,z) 

N, then arc (x ,z)  is contained entirely in A or B. If  arc(x ,z)  G B, then for 
x < y < z let [e(y),f(y)] be the other chord which is equal and parallel to [y ' ,x '] .  

Clearly, e is a continuous function of  y. And if we reflect arc (y ' ,  x ' )  upon arc (e(y), 

f ( y ) )  we get e(y) • V with x < e(y) < y. Hence, the range of  e, restricted to 
arc(x,z) ,  must be an interval of the form arc(x,w) which is contained wholly 
in V. Similarly, we take care of  the case when arc (z, x) _ N. Hence, there 
exists an open arc M such that M - {x} ~ V. 

Now for the proof  of  part (1) of  the Theorem we let x be any fixed point not in V. 
Then by applying Lemmas 3 and 4 we can find a neighborhood W of  x such that 



1963] A PROPERTY OF PLANAR CONVEX BODIES 253 

for any y e W case 8 or 9 prevails. Then applying Lemma 5 we can find a deleted 
neighborhood of  x which is contained in V. Hence, the points of  BdC - V are 
isolated and consequently, B d C -  V is countable. 

For part (2), let x ~ BdC - V and choose y to the clockwise side of  x in Ux. 
Then case 8 or 9 prevails. In case 8, reflecting the arc(y,  x ' )  upon the appropriate 
arc(c,d)  we get x ' e  F. And in case 9 we reflect arc (a , x ' )  upon the appropriate 
arc(c,d)  to get x ' e  V. Hence, x ~ B d C -  V implies x ' ~  V, finishing the proof  
of  the Theorem. 

There remain some interesting and seemingly difficult unsolved problems 
relating to the nature of V in BdC. Namely, (1) is V = B d C  when C is rotund 
and differentiable; and (2) in the general case, is V dense in BdC or is B d C -  V 

even countable? 
Also property ~ can be generalized to any closed curve C in the plane to : C has 

property ct at p if there exist distinct x, y, z in C such that (x - p) + ( y -  p), 
( x -  p) + (z - p) and ( y -  p) + (z - p) are also in C. Some unsolved problems are 
(3) is there such a point  for each closed curve C; (4) if so, what is the nature of 
such points; and (5) can convex closed curves be characterized as those closed 
curves having property ~ at each interior point? 
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